Tactical decompositions of designs over finite fields

نویسندگان

  • Anamari Nakic
  • Mario-Osvin Pavcevic
چکیده

Abstract. An automorphism group of an incidence structure I induces a tactical decomposition on I. It is well known that tactical decompositions of t-designs satisfy certain necessary conditions which can be expressed as equations in terms of the coefficients of tactical decomposition matrices. In this article we present results obtained for tactical decompositions of q-analogs of t-designs, more precisely, of 2-(v, k, λ2; q) designs. We show that coefficients of tactical decomposition matrices of a design over finite field satisfy an equation system analog to the one known for block designs. Furthermore, taking into consideration specific properties of designs over the binary field F2, we obtain an additional system of inequations for these coefficients in that case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Orbits of Collineation Groups

1. Introduction In this paper we consider some results on the orbits of groups of collineations, or, more generally, on the point and block classes of tactical decompositions, on symmetric balanced incomplete block designs (symmetric BIBD = (v, k, 2)-system=finite 2-plane), and we consider generalizations to (not necessarily symmetric) BIBD and other combinatorial designs. The results are about...

متن کامل

On Strong Tactical Decompositions

If a 2-(v, k, k) design 2) admits a tactical decomposition with d point classes and c block classes then b — v ^ c—d ^ 0, (see [3]). Decompositions for which b+d = v + c are of special interest (see for instance [1]), and are called strong. Any tactical decomposition of a symmetric design is strong. A strong tactical decomposition of a design is called a strong resolution if it has only one poi...

متن کامل

Classical Wavelet Transforms over Finite Fields

This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...

متن کامل

Structure of finite wavelet frames over prime fields

‎This article presents a systematic study for structure of finite wavelet frames‎ ‎over prime fields‎. ‎Let $p$ be a positive prime integer and $mathbb{W}_p$‎ ‎be the finite wavelet group over the prime field $mathbb{Z}_p$‎. ‎We study theoretical frame aspects of finite wavelet systems generated by‎ ‎subgroups of the finite wavelet group $mathbb{W}_p$.

متن کامل

Symmetric (79, 27, 9)-designs Admitting a Faithful Action of a Frobenius Group of Order 39

In this paper we present the classification of symmetric designs with parameters (79, 27, 9) on which a nonabelian group of order 39 acts faithfully. In particular, we show that such a group acts semi-standardly with 7 orbits. Using the method of tactical decompositions, we are able to construct exactly 1463 non-isomorphic designs. The orders of the full automorphism groups of these designs all...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2015